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Statistical Analysis of Strength and

Life of Composite Materials

I. Introduction

The objective of this program is to analytically simulate the static and

fatigue failure of composites in terms of relevant statistical models. This

model simulation is then confirmed by actual static and fatigue tests. The

results presented here will help in achieving the long range objective of using

composites with a higher degree of confidence and to remove the unnecessarily

high safety factor because of the high scatter in strength and life properties.

Due to the large scatter, the properties of composite materials, such as

static strength and fatigue life, must be treated as. random variables. In con-

ducting experiments, a statistically meaningful number of specimens must be used

for each test condition. Statistical tools must be used in interpreting the

test results. For a complete understanding of failure mechanisms, fracture

mechanics and other deterministic failure models must be used. We need to know

what is the failure mode (fiber breakage, debonding, matrix degradation, cracks

in matrix, etc.) Deterministic models alone, however, are not sufficient

because they cannot be verified by experiments, unless statistical methods are

incorporated. Therefore, both the deterministic mechanics approach and the statisticcr

approach are essential in the complete understanding of failure of composites.

The emphasis of the present program is the statistical approach.

We shall make the general assumption that the failure modes under fatigue

loading are essentially the same as those under static loadings of the same

nature. In other words, fatigue failure under tension fatigue is similar to

static failure in tension. This major assumption, if proved to be correct, will

have major implications both in our basic understanding and practical application

*1 1



of composite materials. If the failure modes of static and fatigue loadings

are the same, then it follows that a particular specimen that is strong in

static strength must also have long fatigue life. The words strong and long

are both used in relation to other specimens of the same nominal specification.

In more precise terms, we may say that among a population of specimens the

ranking of a particular specimen in static strength must be the same as its

rank in fatigue life. We have called this the strength-life equal-rank assump-

tion. It is shown that this assumption is implied in many existing fatigue

degradation models.

In support of the equal-ranking assumption, we have studied the residual

strength after certain cycles of fatigue loadings. Both experimental tests and

theoretical models are used. We have also made proof-test experiments to

support the equal-rank assumption. A static proof load is first applied; the sur-

viving specimens are then tested either in static strength or fatigue life. Our

experimental results seem to support the equal-rank assumption.

In the theoretical modeling, we have proposed a sudden-death model, which

should be used to distinguish degradation of residual strength. Three possible

regimes of residual strength are identified. A specimen may have an increase

in strength, weak degradation, or strong degradation. It is pointed out that

some investigators mistake the weak degradation as an increase of strength.

It is shown that the increase in residual strength we observed, as well as

similar-cases observed by a few other investigators, is statistically meaningful

and represents a true increase in strength. This is explained in terms of

fracture mechanics.
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Another approach in studying the failure mechanism under tension fatigue

is to study the residual compression strength after tension fatigue. Our

experimental results show that tension fatigue degrades the compression

residual strength much more than it degrades the tension residual strength.

This gives support to the assumption that tension fatigue weakens the matrix

more than the fiber.

During the course of our study, we found out that the existing statistical

tools are not sufficient for composite fatigue research. For instance, because

of non-uniform definition of terminology, the equations and curves in most re-

ports cannot be reproduced by others. The fatigue life distribution is of such

a particular form that existing simple types, such as log normal and Weibull,

cannot be fitted. F or these reasons, we have devoted a certain amount of

effort in developing statistical tools for the study of composite fatigue. We

have assisted in organizing a Workshop on "Statistical Aspects of Testing of

Composite Materials." In addition to introducing basic statistical concepts

to composite engineers, we have tried to establish a general convention of

data reduction and presentation. This will be helpful in communication between

different investigators. Also, some recently developed methods were presented.

Another statistical tool we developed is on fitting distribution equations

to fatigue data of composites. It is shown that the fatigue life of certain

composites is best fitted by two segments of Weibull distribution. Maximum

likelihood estimation equations are developed for fitting this two-segmented

Weibull distribution.
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Most of our results have been reported either in AFWAL/ML Technical

Reports [1] (21, or in open literature [3] [8]. The details will not be

repeated here. Some of the data, curves, and discussion have not been re-

ported before; these will be included in this report.

In Section II, the results of our theoretical research are summarized.

In Section III, our experimental work is outlined. Two of our recently

presented papers are included in the Appendices of this report for easy

reference.

.1 4



II. Theoretical Analysis

Degradation and Sudden Death Models

Two models for the residual strength in fatigue tested specimens are

studied, namely, the degradation model and the sudden-death model. The degra-

dation model is based on an assumption used previously [91-[ll] which stipu-

lates that the strength of each specimen decreases a little after each cycle of

fatigue loading. When the residual strength drops to the value of the applied

fatigue stress, fatigue failure occurs. On the other hand, the sudden-death

model assumes that the strength of a specimen does not change after each cycle

of fatigue loading. The effect of each cycle is impressed on the specimen in

a form other than reducing its residual strength. For instance, it may change

the matrix properties, which does not change the residual strength immediately.

The fatigue failure is governed by some mechanism other than the residual

strength. Only when the applied cycles are close to the fatigue life will the

strength then drop drastically in a short number of cycles. For the sudden-

death model, we have to impose the additional assumption that there is a unique

relation between static strength and fatigue; the stronger ones last longer [ 4 ].

This unique relation is implied in the degradation model.

In comparing the residual strength with the static strength, it is proposed

that the reduced population that includes only "top-percentage" of the static

specimens should be used. The percentage that is excluded should equal the

percentage of the fatigue specimens that failed before the residual strength

test is taken. By comparing the "top-percent mean" of the static strength WIL'

the mean residual strength, we can see whether there is degradation or increase

in strength. The top-percent mean can be calculated either from the distribution

of the total population by taking proper conditional probability, or by taking

the sample mean of the appropriate stronger samples.
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The theoretical models were compared with six sets of experimental fatigue

residual strength data of graphite/epoxy composites. These data were obtained

from the works of four independent researchers. In general, the degradation

model correctly predicts the mean of the residual strength of the six sets of

test data studied. This is not a severe test for the model, because the decrease

in the mean residual strength in these six cases is very small. The sudden-

death model, which assumes no degradation for individual specimens, is also

satisfactory in predicting the residual mean for most of these six cases.

The degradation model presented here is overly restrictive. Once the static

and life distributions are given, it predicts a fixed residual strength distri-

bution, which may not agree with experimental data. A more general degradation

model with an additional parameter would be more versatile in matching different

residual strength distributions of composite materials.

It is also found that for unidirectional composites, the decrease of resid-

ual strength is less than that for composites of general layup. In fact the

residual strength may increase initially [3].

An Improved Degradation Model

Realizing that the degradation model of reference 3 is overly restrictive,

an improved degradation equation which contains an additional parameter was

introduced and presented in reference 4. This parameter can be adjusted to

fit various residual strength data for a material of fixed static strength

and life distributions.

Hahn and Kim [9] have introduced the assumption of a unique relation be-

tween the ranks in static strength and in fatigue life of a given specimen.
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We shall call this the strength-life equal rank assumption. This is a very funda-

mental assumption because if this is not true, then the equation of degradation

of residual strength cannot be deterministic, and must involve random variables.

It must be pointed out that almost all fracture mechanics equations in fatigue are

deterministic and they all imply this equal rank assumption.

As mentioned in the Introduction, the equal-rank assumption is a direct

consequence of the similarity in failure mode between static and fatigue failure.

We may mention here that this similarity exists for metals. For steel, it is

now generally accepted that the fatigue limit is related directly to its tensile

strength. The empirical relation is that fatigue limit strength is one-half

the ultimate tensile strength. It is easy to hypothesize from this relation

that for steel, the failure modes under fatigue and static tension are similar.

In reference 4 we first make the strength-life equal rank assumption. Based on

this assumption, the constraints on the degradation equation are derived. Then

a possible form of degradation equation is introduced. The residual strength

distribution is then derived, and compared with existing experimental results.

For the test data on graphite/epoxy studied, two sets show increase in residual

strength, two show weak degradation, and two show strong degradation.

Another concept introduced here concerns two processes going on simulta-

neously during fatigue. One is the degradation of individual specimens, the other

is the weeding out of weak specimens by fatigue failure. Depending on which of

these two processes is more dominant, the mean of the residual strength can be

smaller or larger than the mean of the static strength. The former is called

strong degradation, the latter weak degradation.

Two-Segment Weibull Distribution

In studying the test data of fatigue life distribution of composites we

have observed that in certain cases, the distribution is best represented by

two distribution functions, one in the low life region, one in the high life region.

7



In reference 5, we have presented the maximum likelihood method of estimation

of parameters of a two-segment distribution where each segment is a two-

parameter Weibull distribution. It seems that the maximum likelihood estimation

method has not been applied to the two-segment Weibull distribution with unknown

parameters previously. We first derive the equations of the M.L.E. method,

with progressive censoring capability. The general approach is similar to that

r
used by Cohen [12], who has applied the M.L.E. to a single Weibull function,

with progressive censoring. A few illustrative examples are given. Two of

these examples are for fatigue life of composite materials.

Details of this work is given in Appendix A.

A Cumulative Damage Rule

Traditionally, engineers have used Miner's rule for cumulative damage in

fatigue. Miner's rule is a simple phenomenological rule, which gives the life

under consecutive loadins of different load levels, if the life at each

individual level is known. It is well-known that Miner's rule is deterministic;

it gives only mean fatigue life and does not account for the variability, or

distribution, of life. It is shown in reference 6 that Miner's rule contains

basic statistical inconsistency, and cannot be subject to experimental compari-

son for composite materials because of their large scatter in life.

In reference 6, a new cumulative damage rule that is applicable for fatigue

life with large scatter is proposed for composite materials. It is based on the

concept of percent-failure instead of the percent-life consumed assumption

implied by Miner's rule. This rule is just as simple as Miner's rule, is

statistically correct, and can be subject to experimental comparison. The

proposed cumulative damage rule is applied to two sets of experimental data.

Both sets of data agree well with the proposed rule.

8
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The Existence of Endurance Limits

In studying fatigue of any material, it is always desirable to know its

endurance limit, also known as fatigue limit. For composites, the exist.-

ence of an endurance limit has not been established because of lack of

sufficient test data. This is partly due to the difficulties involved in

fatigue testing of composites in comparison with testing of metals. The com-

posite specimens are usually coupons subjected to tension loading. This is not

as simple as the standard rotating beam fatigue tests used for metals. In addition,

due to heating during fatigue, the maximum frequency applied to composites is

limiteO to around 10 to 20 Hz, whereas for metals, a frequency of more than 100 lz

is very common. Because of the low frequency, high cycle fatigue data for com-

posites are very timd consuming to generate.

By studying the limited amount of existing fatigue data, we would like

to speculate that there is no clear-cut endurance limit for composites. A

clear-cut distinct endurance limit exists for ferrous metals because they possess

workhardening property during the crack nucleation stage. For composites, we

do not detect anywork hardening property, therefore, a distinct endurance limit

is not likely to exist.

In order to have a better perspective of the situation, let us review

briefly the fatigue mechanism of metals. Fatigue behavior of ferrous metals

such as steel, is quite different from that of nonferrous metals. The former

has a distinct endurance limit, the later does not. For steel, enough tests

have now been run at 109 cycles to establish that if the specimen does not

break by 107 cycles, it would not fail if the tests were continued. Ferrous.1
metals can withstand an infinite number of stress cycles providing the stresses

are all below the endurance limit. This endurance limit is a "true" limit in

9



the sense that if the applied stress is below this limit no failure will occur,

regardless of the number of cycles applied. Also, the S-N curve in log-log

coordinates has two straight line portions intersecting at a "knee."

On the other hand, for nonferrous metals such as aluminum and copper, there

appears to be no true endurance limit. The S-N curve does not show two straight

line portions, but a continuous curve with no "knee." For these metals, it is

customary to take the strength at 5xlO 8 cycles as the endurance limit, even

though it may not be established that the S-N curve has become completely flat

at this point. In these cases, the endurance limit is an arbitrarily defined

strength for engineering convenience. *We are not sure that at a lower stress

the specimen will endure infinite cycles.

The existence of distinct endurance limit for ferrous metals can be

explained, at least qualitatively, from the fracture mechanics point of view.

It is generally accepted that fatigue failure of metals involves three stages,

namely, the crack nucleation, the crack propagation, and the final fracture

stages. During the crack nucleation stage, shear deformation (slip) occurs

in the atomic crystalline structure. This slip action may develop into slip-

bands and microcracks. During this stage, the slip and microcrack follows the

direction of maximum shear stress. During the second stage, the crack propaga-

tion stage, the microcrack grows in length after each cycle of loading. This

crack propagates along a direction normal to the maximum tension stress. When

the crack is of sufficient length, the remaining intact material cannot

support the load, final fracture and separation then occur.

During the crack nucleation stage, if the applied stress is low, the

reversed cyclic loading may cause work hardening, or precipitation hardening.

10



This hardening strengthens the local vulnerable spots sufficiently so that the

slip action ceases. It is believed that ferrous metals do have this microscopic

work hardening effect. When the applied stress is below the fatigue limit, the

micro.v.ork hardening strengthens the material, and any subsequent cyclic loading

at the same stress will not nucleate any microcrack, and the material will not

fail under fatigue.

For nonferrous metals, it does not possess thiswork hardening property,

and thus under a very large number of cycles, crack nucleation and the resulting

fatigue failure can still occur.

Coming back to composite materials, we feel that long time fatigue tests

should be performed to establish the existence or non-existence of a true endur-

ance limit. But from the practical point of view, perhaps a convenient number of

cycles should be selected, and define the strength at that cycle as the endur-

ance limit, just as in the nonferrous metal case. The cycle may be less than

8
5xlO , because of practical limitation.

Increase of Fatigue Residual Strength

A few investigators have reported the increase of residual strength after

fatigue loading for certain composite material laminates. Most of these obser-

vations cannot be used as clearcut evidence, because the experimental diffi-

culties involved. For a given specimen, we can measure either its static

strength, or its residual strength, but not both. By nature, the strength

measurement is destructive, for one specimen only one strength can be measured.

Therefore any measurement concerning residual strength change must resort to

average values of a group of specimens. It is customary to compare the mean

residual strength of a group of specimens to the mean static strength of a

similar group. If the mean residual strength was higher than the mean static

11



strength, it was assumed all specimens had increased in strength during fatigue.

We have shown [4] that this practice could lead to erroneous conclusions. It

was proposed that an increase of strength had occurred only when the mean of

residual strength was higher than the mean of the "top percent" of the static

strength specimens. This top percent mean can be obtained by the "sudden-death"

model. If the mean residual strength was less than the top percent static

mean but greater than the static mean of the total population, then weak degra-

dation of the specimens was said to have occurred. Strong degradation happened

when the residual strength mean was less than the total static strength mean.

It is felt that comparing the residual strength mean with the mean of the top

percent of the static strength leads to fairer conclusions.

Let us summarize a few of the experimental works that involves an increase

of residual strength. Reifsnider et al. [13] measured residual strength of

boron/epoxy laminates with layup of [0, + 45, 0]s, and with a central hole.

They subjected each specimen to fatigue loading, and stopped the loading when

the change in dynamic stiffness is 18%. Thus, their specimens are subjected

to different cycles of loading, but the same stiffness change. After this cyclic

loading, static residual strength was measured. Their results show that the

specimen with higher applied cycles has higher residual strength. They con-

cluded that fatigue loading increases the residual strength. We believe, however,

their experimental results are less than conclusive, because due to the large

scatter of strength among specimens, it is possible that the stronger specimen

takes more cycle to reach 18% stiffness change; the higher residual strength

may not be due to fatigue, but merely indicates that it is a stronger specimen

. to start with.

Kulkarni et al. (14] also observed an increase in residual strength after

tension tension fatigue in notched boron/epoxy laminates. Their results for

12



notched (circular hole) coupons of [02 + 45] s layup with maximum fatigue stress

equal to 80% of the static strength, and R - 0.1, show an increase of residual

strength of 10% after 5xlO 4 cycles. The increases are 15% after 5x105 cycles,

and 16% after 1.5xi0 6 cycles. They used only three specimens for each case,

and did not take into account the specimen that failed during fatigue. Although

their analytical predictions based on transverse crack propagation agree with

the experimental results mentioned above, they realize that there is no

statistically significant experimental data base to form a positive conclusion.

Waddoups et al. [15] observed an increase in residual strength in [0/90]

S

graphite-epoxy composite laminate with circular notch, subjected to fatigue

loading. They only gave average strength data, and did not indicate the number

of specimens used and the number of specimens failed during fatigue, before the

number of cycle for residual strength measurement is reached. We are not sure

about the statistical significance of their results.

A few investigators have offered fracture mechanics explanations for the

increase of residual strength. Zweben [16] offered an explanation for notched

composite specimens. He studied the 0* layer of a composite laminate subjected

to an axial loading. The notch is perpendicular to axial direction and cuts n

fibers. At the root of the notch exists an intact fiber. Because of the high

inplane shear stresses at this root, the matrix between the notch and the first

intact fiber is likely to fail. He found that the stress concentration was

highly dependent on the length of the matrix failed region in the fiber direction.

The larger the region of failure, the smaller the stress concentration. In a

fatigue loading situation the fiber at the root of the notch might not fail

but the length of the matrix failed region might continue to grow. Thus the

stress concentration might decrease with applied fatigue cycles. In such a case

it is not unexpected to find the residual strength to be higher than the static

strength for some composites and layups.
13
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Sendeckyj [17] also attributed the decrease in stress concentration as

the reason for increase of residual strength. He discussed the fatigue failure

of [0*/45*/901 graphite-epoxy laminates with central hole. Under fatigue

loading, matrix cracks will occur in various laminas which eventually lead to

a decrease in the stress concentration of the hole. As a result, the residual

strength could increase.

We believe that the explanations offered by Zweben and Sendeckyj are

plausible; from mechanics point of view it is possible to have an increase in

residual strength. Furthermore, our analysis of our present test data [4] and

the test data of Awerbuch and Hahn [18], indicate a true increase in fatigue

residual strength in unidirectional graphite-epoxy composites.
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III. Experimental Work

In support of the theoretical study, we have conducted static and fatigue

tests of more than 600 composite material specimens. We shall give a general

description of these tests here. Some of the details may be found in refer-

ences 3-7.

Specimens

The material system used for this study is the AS-3501-05, with a nominal

fiber content of 65% by volume. Test specimens are cut from panels supplied

from the manufacturer directly. The dimensions of the tension test specimens

are 0.084 cm thick (6-ply), 1.9 cm wide and 22.9 cm long with glass-epoxy end-

tabs of 3.8 cm in length. Thus, the test gage length is 15.3 cm. The dimensions

of the compression test specimens are 0.084 cm thick (6-ply), 1.9 cm wide and

3.2 cm long. Compression specimens used for residual strength testing are cut

from tension specimens; one tension specimen cut into three compression specimens.

Static Test

The static tension and compression tests are conducted on a closed-loop

Instron tester under room temperature (- 21 0C) and ambient humidity (- 0.6 R.H.)

conditions. The loading rate selected is approximately 4000 lb/min (1800 kg/min).

The selection of test specimens follows a random number schedule. Wedges are

used to position the top and bottom of the compression specimen properly in its

gripping device. Between the top and bottom wedges there is a space of 0.64 cm.

Fatigue Life Test

The fatigue tests are also conducted on the Instron tester under the same

room temperature and ambient humidity condition. No effort is made to monitor

any temperature change in the specimen during fatigue. The loading procedure is

as follows: the specimen is first loaded statically with manual control to the

mean stress level; it is then subjected to oscillatory loading with the minimum

to maximum stress ratio of R - 0.1. The running cyclic frequency is 9.5 Hz.
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Most tests are carried to fatigue failure; some are suspended for purposes of

either residual strength measurement, or the reduction of testing time.

Summary of All Tests

All the static and fatigue tests performed are summarized in Table 1. The

experiments are grouped into 9 tests, 6 static and 3 fatigue. Table 1 gives r
brief indication of the nature of each test, and the number of specimens used.

The specific reference, or table in this report where details may be found is

also given. In Test 1, base-line strength data are generated, both for tension

and compression loading. Tests 2 and 3 are strength tests after proof-load to

0.88 Sm and 0.95 Sm, respectively, where S is the mean static strength. Tests
m

4, 5, and 6 are residual strength measurements, after fatigue loaded to the speci-

fied cycles (suspended at cycles). In the fatigue test, Test 7 is the base-line

data generation at four maximum stress levels (0.61 Sm, 0.71 Sm, 0.81 Sm and

0.85 Sm). In addition, the last two columns of Test 7 in Table 1 show the

cumulative damage tests at low-high and high-low loadings. Tests 8 and 9 are

fatigue tests after static proof-loading to 0.88 Sm and 0.95 Sm, respectively.

Some of the test data that have not been reported before are given in Table 2.

Proof-Tests

The main objective here is to investigate the effects of proof-load on both

the (post-proof) static strength behavior and fatigue life behavior of unidirec-

tional graphite-epoxy laminates. The specimens are first subjected to a static

load. Those surviving specimens are then loaded either statically, or under fatigue

until failure. From the present test results, it is found that proof-loading does

not change the essential features in the static strength. Proof-loading removes

the weaker specimens from the population, thus guaranteeing a minimum strength for

the specimens that survive the proof-test. Moreover, proof-loading degradates

only slightly the fatigue property of the specimens; hence the procedure can still

guarantee a minimum life, with a high degree of confidence.
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Table 1. Summary of Number of Specimens used in Static and Fatigue Tests

(number in bracket gives Ref. or Table (Tab)
where data appears)

(Total specimens tested - 624)*

Static Tests - total 317 specimens

Static Strength Residual Strength Following
0.71 Sm (1.034 GPa) Fatigue**

Tests Tension Compression Tension Compression***

1 Base-line data 24,[Ref 7] 28,[Tab 2-A]

2 Proof-load to
0.88 Sm (1.29 Gpa) 25,[Ref 7]

3 Proof-load to 2 71
0.95 Sm (1.39 GPa) 25,[Ref 7]

4 Suspended at 15,[Tab 2-B] 60,[Tab 2-D]
10,000 cycles

5 Suspended at 15,[Ref 3] 60 [Tab 2-E]
100,000 cycles

6 Suspended at
1,000,000 cycles 8,[Tab 2-C] 57,[Tab 2-F]

Fatigue Tests - total 299 specimens

Max. Stress Max. Stress Max. Stress Max. Stress Max. Stress Max. Stress
0.61 Sm = 0.71 S = 0.81 Sm = 0.85 Sm = 0.71 S = 0.85

Tests (.885 GPa) (1.034 Cpa) (1.179 CPa) (1.243 CPa) then 0.8SM then 0.7TSm

7 Base-line 2,[Tab 2-G] 130,[Ref7] 25,[Ref 7] 25[Tab 2-11] 20,[Tab 2-1] 22[Tab2-J]
Data

8 Proof-load
to 0.88 Sm 25,[Ref 7] 25,[Ref 7]
(1.29 Gpa)

9 Proof-load
to 0.95 Sm 25,[Ref 7]
(1.39 Gpa)

Notes:
* Eight of the 624 specimens tested were not reported due to a machine malfunction

or an end tab failure.

•* All residual strength specimens have been first subjected to fatigue.

•** Three compression specimens were made from each tension specimen.
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Table 2. Summary of Test Results

A. Compression Static Strength, MPa. 28 specimens failed

524 669 738 828 904
566 711 780 835 1014
566 724 780 849 1021
580 738 787 897 1049
600 738 800 904
669 738 814 904

4
B. Residual Tension Strength, MPa, at lxlO cycles. Tension-tension fatigued

with max. stress = 1034 MPa (71% Si). R f 0.1, f - 9.5 Hz, 15 specimens
failed.

1276 1490 1580
1401 1490 1580
1407 1497 1587
1414 1497 1677
1456 1532 1684

C. Residual Tension Strength, MPa, at ixl0 cycles. Tension-tension fatigued
with max. stress = 1034 MPa (71% Sm). R = 0.1, f = 9.5 Hz, 8 specimens
failed.

1270 1504
1339 1525
1408 1601
1421 1622

D. Res-due.a! Compression Strength, MPa, at lxlO4 cycles. Tension-tension
fatigued with max. stress = 1034 MPa (71% Sm). R 0.1, f = 9.5 Hz,
60 specimens failed.

428 573 621 676 718 773
442 586 628 676 718 773
483 586 628 690 724 780
483 593 628 697 724 787
497 593 635 697 738 787
497 600 649 697 738 807
524 621 656 697 759 814
538 621 656 697 759 828
552 621 669 697 766 856
573 621 669 697 766 862
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E. Residual Compression Strength, MPa., at lxlO 5 cycles. Tension-tension
fatigued with max. stress = 1034 Mpa (71% Sm). R = 0.1, f 9.5 Hz,
60 specimens failed.

297 511 593 656 724 780
442 518 593 669 731 780
462 518 600 669 731 787
476 524 600 676 731 787
476 524 628 683 738 800
483 524 628 683 752 842
483 559 642 690 759 842
504 566 656 697 766 856
511 573 656 718 773 883
511 580 656 718 773 890

F. Residual Compression Strength, MPa, at lxl06 cycles. Tension-tension
fatigued with max. stress = 1034 MPa (71% Sm). R = 0.1, f = 9.5 Hz,
57 specimens failed.

345 476 587 628 683 773
407 476 587 642 690 787
407 483 594 649 697 794
414 483 594 656 697 856
428 497 600 663 704 876
428 497 600 663 738 883
442 504 607 676 738 1035
442 524 614 676 738
455 552 614 676 759
462 552 621 683 766

G. Tension-Tension Fatigue Life, Cycles. Max. stress = 885 MPa (61% Sm),
R = 0.1, f = 9.5 Hz, 2 specimens suspended.

2 (1,000, 000)

H. Tension-Tension Fatigue Life, Cycles. Max. stress = 1243 1f?a (85% Sm)
R = 0.1, f = 9.5 Hz, 25 specimens, 4 suspended, 21 failed.

1 372 5,156 34,395 142,640
42 718 8,981 36,437 4(300,000)
196 1,955 12,648 40,799
246 3,598 14,220 45,193
300 3,824 23,118 49,297
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I. Cumulative Damage Fatigue Life, Cycles. Max. stress 1034 Mpa (71% Sm)
for the first 458,900 cycles then Max. stress = 1243 MPa (85% Sm),
R = 0.1, f = 9.5 Hz, 20 specimens, 3 suspended, 17 failed.

24,300 459,804 508,592 534,165 942,388
176,582 471,489 514,293 535,026 3(1,000,000)

350,702 479,189 521,446 693,471
458,934 481,438 524,392 705,871

J. Cumulative Damage Fatigue Life, Cycles. Max. stress = 1243 MPa (85% Sm)

for the first 3,570 cycles, then Max. stress = 1034 MPa (71% Sm),
R = 0.1, f = 9.5 Hz, 22 specimens, 12 suspended, 10 failed.

1 24 524,916

1 227 807,728
5 250 12(1,000,000)

13 472

.t
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Residual Compression Strength

Both residual tension strength and residual compression strength results were

obtained by suspending specimens from 0.71 Sm fatigue. Residual strength is the

strength of a specimen after it has been fatigued to a predetermined life. r
Specimens were suspended at 10,000 cycles, 100,000 cycles, and 1,000,000 cycles.

Figure 1 is a plot of median residual strength versus fatigue life. The median

residual strength is nondimensionalized with its respective static median strength,

and the fatigue life is nondimensionalized with its characteristic life.

It can be seen from Figure 1 that the median residual tension strength

has not changed much (in fact, increased at two of the three suspended lives),

whereas the compressive residual strength decreased up to 20%. This supports

our hypothesis that cyclic fatigue loading weakens the matrix more than the fiber.

I
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Failure Modes

For specimens tested statically in tension, failure was always catastropic.

In some cases the specimen was almost totally shattered leaving only a few

longitudinal strands of material (see Figure 2), while in other cases there was

fiber breakage forming two to three cracks normal to the longitudinal direction

as shown in Fig. 3.

Figure 2. Shattered Unidirec- Figure 3. Step-like Cracking in a
tional Specimen Unidirectional Specimen

Failure in fatigue tested specimens was also catastropic. The specimens would

show an initial fiber separation along the edges, but this does not lead to any

failure. As the tests progress, some delamination and longitudinal cracks will

appear. However, this does not indicate an impending failure. The specimens

often survived long lives after the occurrence of a delamination or longitudinal

crack. As with the static specimens, fatigue specimens either shattered or

failed in a step like manner through the width of the specimen. Specimens failed

in fatigue could not be distinguished from specimens failed statically.
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For specimens tested in static compression, there were two modes of

failure, end crushing and longitudinal matrix cracking (in the direction of

the fibers). End crushing was the most common mode, and when end crushing

occurred the specimens exhibited a sudden decrease in strength and the test

was stopped. Specimens with high strength usually failed due to longitudinal

cracking.
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IV. Conclusions and Recommendations

In this section, we shall summarize the conclusions made in previous

sections and make some recommendations.

1. Because of the large scatter of properties of composite materials,

statistical tools must be used in interpreting test results. For a

complete understanding of failure mechanism, both deterministic micro-

mechanics approach and statistical approach are needed.

2. Residual strength of composite materials could increase after a small

number of cycles of fatigue loading. This fact has been observed by a

few investigators and is believed to be a statistically meaningful

observation.

3. The curve of the sudden-death model proposed here should be used as the

dividing line between the cases of increasing and decreasing residual

strength.

4. The strength-life equal rank assumption seems applicable to composites

under static tension and fatigue tension loadings. This implies that

the failure modes for static and fatigue loadings are the same.

5. A degradation model is proposed. It satisfies the equal-rank condition

and other theoretical constraints, and has a free parameter to adjust

to various cases.

6. Our experimental results indicate that residual tension strength after a

tension fatigue loading of less than the characteristic life of the

specimen decreases very little, if any. Sometimes it may increase. How-

ever, the corresponding compression residual strength decreases appreciably

from the static compression strength. Since compression strength is more

dependent on matrix regidity, we conclude that during the early life period,

fatigue loading degradates primarily the matrix.
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7. Static proof-loading can guarantee a minimum static strength. To a

lesser degree, it can also guarantee a minimum fatigue life.

8. Because composites do not possess workhardening properties, we

speculate that a distinct endurance limit does not exist. We

recommend that long time fatigue tests be performed to ascertain the

existence or nonexistence of an endurance limit. For practical pur-

poses, a specific fatigue cycle should be selected as the "apparent"

endurance limit cycle.

26
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Appendix A

Maximum Likelihood Estimation of a

Two-Segment Weibull Distribution for Fatigue Life

This is the manuscript of a paper presented at the ASTM Symposium on

Statistical Analyses of Fatigue Data, on October 30, 1979, in Pittsburgh, Pa.
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Maximum Likelihood Estimation of a

Two-Segment Weibull Distribution for Fatigue Life

r
Pei Chi Chou and Harry Miller

Drexel University
Philadelphia, Pa.

ABSTRACT: A two-segment distribution is proposed for the representation of

fatigue life of modern high-performance composite materials. Each segment

is a two-parameter Weibull distribution. Equations of the maximum likelihood

method in estimating parameters are derived, and an iterative solution scheme

is presented. Several example problems are included.

KEYWORDS: maximum likelihood estimation, Weibull distribution, censored

samples, composite materials, fatigue, strength.
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Nomenclature

k subscript which denotes a segment (k - 1,2)

F(x) cumulative distribution function

f(x) probability density function

Yk Weibull shape parameter of the kth segment

k  Weibull scale parameter of the kth segment
kY

9k alternate form of the scale parameter (9k  k

6 value of x separating the two segments (i.e., intersection point)

N total sample size; N = n I + n2 + n3 + n
number of failed sample points with value < 6

n2 I number of failed sample points with value < 6

n 3  number of suspended sample points with value < 6

n4 3 number of suspended sample points with value > 6

x* value of the ith failed specimen ordered such that xi  xi+ I

Yi value of the ith suspended specimen ordered such that yi <

I
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Introduction

Due to its light weight and high strength, modern high-performance composite

materials, such as graphite fiber embedded in epoxy matrix, have been used as

structural members in military and commercial aircraft. They are also being

used in sporting goods (skis, tennis rackets and golf clubs) and are being con-

sidered as the structural material for the automobile in the 1980's. At the

present, the composites have one disadvantage; that is, its strength and fatigue

life have larger scatter than those of metals. Extensive testing is currently

being carried out to characterize these materials for the purposes of better

understanding their behavior, and for design applications.

In studying the test data of fatigue life distribution of composites we

have observed that in certain cases, the distribution is best represented by

two distribution functions, one in the low life region, one in the high life

region. In this paper, we shall present the maximum likelihood method of

estimation of parameters of a two-segment distribution where each segment is

a two-parameter Weibull distribution.

Two-segmented distribution first appeared in Weibull's paper [1]. In

introducing the distribution now bearing his name, Weibull considered two types

of this distribution, a simple type, and a complex type. His simple type is a

standard three-parameter Weibull; the complex type is the sum of two sub-popula-

tions. The distribution function of the complex type appears as two straight

line segments in the Weibull coordinate. He showed a few examples, including

one on the length of cyrtoideae (a kind of sea shell), and one on the fatigue

life of steel; the latter one will also be used as an example for our present

approach. He used three-parameter Weibull for each of his sub-population,

and used trial-and-error method and curve fitting by eye in estimating parameters.
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In 1959, Kao [2] also discussed the two-segmented Weibull distribution in

connection with failure of electronic tubes. He proposes that the failure can

be classified into two types; one is sudden or catastropic (infant mortality),

the other is wear-out or delayed failure. The distribution function of life

of the tube is the sum of two distributions, each of a sub-population. He called

this a "mixed distribution," which is similar to the "multi-risk" model discussed

by Herman and Patell [3]. Kao further demonstrated that when the characteristic

life of the wear-out distribution is large, the mixed distribution can be approxi-

mated by a "composite distribution" which is essentially that of the two-segmented

Weibull discussed in this paper. He used a 2-parameter Weibull for each segment,

placed some restrictions on the values of the two shape parameters, and used

graphical curve fitting in estimating the parameters.

Srivastava [41 studied the problem of life distribution of a specimen sub-

jected to two alternating stress levels. He assumed that the Weibull shape param-

eter for these two stress levels are the same, but the scale parameters are

different. The combined distribution for many alternating periods at each of the

stress levels is derived.

In reliability engineering, the concept of multi-segment distribution is

also being used. One example is the piecewise-linear failure rate (hazard function)

model, which is one version of the well-known "bathtub curve," [5]. Mann, Schafer,

and Singpurwalla [6] also discuss a 'two component composite distribution' which

is similar to that described by Kao [2].

It seems that the maximum likelihood estimation method has not been applied

to the two-segment Weibull distribution with unknown parameters. In this paper,

we shall first derive the equations of the M.L.E. method, with progressive censor-

ing capability. The general approach is similar to that used by Cohen [7], who

has applied the M.L.E. to a single Weibull function, with progressive censoring.

A few illustrative examples are given. Two of these examples are for fatigue life

of composite materials.
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Two-Segment Weibull Distribution

Let us consider the two-segment Weibull distribution with a probability

density function defined as

Yk Yk-I xk]

f(x)-x exp X(1)
kL k

and the corresponding cumulative distribution function

Y k
F(x) =1- expL X-- (2)

where

k = 1 for x < 6

and

k = 2 for x >.

Each of the two segments is a two-parameter Weibull distribution. In general,

at x = 6, f(x) is discontinuous but F(x) is continuous. When the domain of x

extends from 0 to infinity, we have the condition,

F f(x)dx = 1 (3)

which is equivalent to F( 6 )k I  F(6)k 2 .

Combining Eqs. (2) and (3), we obtain

0 6 2 612 (4)

This equation reduces the number of independent parameters from four to

three. We shall consider y1, Y2 9 and 02 as our independent parameters.

In this study, 6 will be treated as a preselected constant. The best suited

value of 6 will be determined by comparing the K-S statistics.
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With a given value of 6, we shall use the maximum likelihood method in

estimating the values of the parameters yk and ek for a random sample of N

specimens containing (n1+n2) failed specimens, and (n3 +n4) suspended, or

censored, specimens. The censoring can be progressive, i.e., any number of

specimens can be censored at any time.

The likelihood function for this distribution may be written as:

nl Y (Y 11) xi

L const 1I iexp
i- I 1x

1 2 2 (Y2 -l) xi
in x exp

33 Yi Yn (5)

exp- • exp

On taking logarithms of Eq. (5), differentiating with respect to y1 , Y2 and 02,

and keeping in mind that e0 is related to the other parameters by Eq. (4),

we obtain the estimating equations

x 1 3 :+ ( +6)
i i 2 92 l-n +1 i~n, (6

&22 12 [,n 2  y n3 +4  Y

72 2 2

en i i + I Yj -n 2 tn 6 (7)
2 1 ion3+l j
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n n n,- nl n3 y
1l 1 F l Yltn +

=--+ in x +  x i  In x +  y in yi"'1 i-i 1 i- i-l

n Y n

+-n xY1 + 3 Y -n in 6 (8)
1r

Equations (4), (6), (7), and (8) form a system of four equations in the

four unknown parameters y 92 , and 0 The solution for the parameters

is obtained by an iterative scheme which involves a first estimation of the

values of y and y2 " These values are then substituted into Equations (4) and

(6), and values of 9l and 02 are solved. These values are then used in

Equations (7) and (8) to obtain new estimates of Ti and y2 " This process is

repeated until the values of all the parameters have converged.

The solution scheme presented above has been programmed for use on an

IBM 370 computer. The convergence criteria used in this program compares the

value of each parameter to its respective value in the previous iteration. If

Yk - Yk(previous) < 0.0001 (9)

and if

[8k - k(eiu) ]
p < 0.0001 (10)8k

the values of Y and k are considered satisfactory and the iteration processk k

is stopped. For all data sets we have studied, convergence has always

occurred within 40 iterations, even when the initial estimates were an order

of magnitude higher than their final value.

i
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Illustrative Examples

We shall present four examples. The first one is the fatigue life of

Bofors ST-37 steel, which was originally studied by Weibull. The second one

involves a set of data points taken from a known two-segment distribution. The

last two examples involve the fatigue life of graphite-epoxy composite materials.

Bofors Steel

The data for this example is taken from Weibull's paper reference 1.

Fatigue life data of 235 specimens of Bofors ST-37 steel under rotating beam

tests were recorded. The life of individual specimens were not given; only the

number of specimens failed within certain life intervals were tabulated. These

are reproduced in Table A-1. In applying our M.L.E. equations, we have assumed

that all specimens with life within a given interval have life at the upper

limit of the interval. The results are shown in Fig. A-1. The data points are

shown by vertical lines bounded by circles, the location of which is calculated

according to the median rank formula [8].

Weibull's original fitted curve is also shown in Figure 1. He used twoiV
three-parameter Weibull distributions and fitted the curve to the data points

visually.

In our solution, the value of the partition life, 6, is determined by

comparing the K-S statistics of a few values of 6.

Figure A-1 is plotted in the "Weibull Coordinates"' two-parameter Weibull

functions appear as straight lines, while three-parameter Weibull distributions

do not.

Idealized Data Set

In the second example, we shall start with a hypothetical two-segment

Weibull with known values of the parameters, select a few points from it,

and then apply the M.L.E. to determine the parameters corresponding to these
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points. These are then compared with the original distribution. The

hypothetical distribution selected has the following values:

YI = 2.0, Y 2 = 0.5

55
@i= 2.3 x 105 9 2 = 4.0 x 105

= 1.913 x 10

Twenty points were selected from this distribution with equal AF between points.

These points, together with the curve of M.L.E. of the distribution are shown

in Fig. A-2. The agreement is satisfactory. It can be shown that as the

number of points increases, the estimated values of the parameters approach

the original value.

Fatigue Life of Composite Material, Complete Samples

In reference 9, Ryder and Walker tested graphite-epoxy composite laminates,

typical to those used for aircraft structures. We shall study his data for

fatigue life under tension-tension fatigue, of the Laminate II composites.

Details of the specimen layup, testing condition, and fatigue life, are given

in Table A-2. Twenty failed data points are available, which represents a

complete sample without censoring.

The results are shown in Fig. A-3. The solid curve is the estimated two-

segment Weibull, and the dotted line is a M.L.E. of a single function Weibull.

The two-segment Weibull shows a good fit to the data.

Fatigue Life of Composite Material, Censored Samples

In reference 10, Wang, Chou, and Alper have studied the fatigue life of

unidirectional graphite-epoxy composites. They used 25 specimens, 20 fatigued

to failure, five suspended (censored) at 106 cycles. Their data are reproduced

in Table A-3. The estimated distribution is shown in Fig. A-4. Again, the fit

is satisfactory.
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Table A-I - Fatigue of Bofors Steel [1] 2
[Rotating Beam Test at + 32 kg/mm2 ]

Life, Cycles Number of Life, Cycles Number of

Specimens Specimens

12,500 - 17,500 5 47,501 - 52,500 6

17,501 - 22,500 43 52,501 - 57,500 4
22,501 - 27,500 78 57,501 - 62,500 3

27,501 - 32,500 44 62,501 - 67,500 2

32,501.- 37,500 23 67,501 - 72,500 1

37,501 - 42,500 14 72,501 - 77,500 1

42,501 - 47,500 8 77,501 - 82,500 1
82,501 - 87,500 1

87,501 - 92,500 1

Table A-2 - Ryder-Walker Tension-Tension Fatigue Tests (9]

Fatigue Life, Cycles:[max stress = 50 ksi, F = 10 Hz
Gr/E (0/+45/90/-45 2/90/+45/0) s

11,491 51,848 64,070 81,571
17,578 54,187 69,711 87,373
40,270 58,530 70,049 116,667
41,200 59,320 70,497 367,644

* 44,830 60,912 71,400 513,600

Table A-3 - Wang-Chou-Alper Tension-Tension Fatigue Tests [10]

Fatigue Life, Cycles: (6 ply Gr/E unidirectional)
(max stress = 171 ksi, F - 9.5 Hz)

30 288 5,984 15,754 1,000,000*

69 380 8,609 18,995 1,000,000*

90 1,570 11,362 22,515 1,000,000*

260 3,269 12,119 97,009 1,000,000*

286 5,653 15,529 149,356 1,000,000*

j] * suspended (censored)
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Concluding Remarks

We have shown that the fatigue life of certain materials can be best

represented by a two-segment distribution, each a two-parameter Weibull. The

maximum likelihood method is applied for parameter estimation with satisfactory

results. We have not studied the failure mechanism or the cause of the failure.

It is very likely that two separate failure mechanisms are present. The iden-

tification of the fatigue life distribution with two segments of distribution

will facilitate the search for the failure mechanisms.

The three parameter Weibull distribution is often used to represent data

that do not agree with a single two-parameter Weibull. With the present method

of conveniently fitting a two-segment, two-parameter Weibull, it seems that

there is no need in using the three-parameter Weibull. If the variable involved

should have a domain from zero to infinity, like fatigue life, there is no

physical reason to impose a finite minimum value, as the location parameter does

in the three-parameter Weibull. Also, the two-parameter Weibull has the con-

venience that its shape parameter gives an indication of the degree of scatter

in terms of the central value, just like the coefficient of variation. For the

three-parameter Weibull, the shape parameter gives the degree of scatter in

terms of the central value minus the location parameter, which is more difficult

in making comparisons. For instance, in terms of two-parameter Weibull, the

population which has the larger shape parameter has smaller scatter. This type

of statement cannot be made for the shape parameter of the three-parameter

Weibull. Further discussion on this point will be made in a separate paper.
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Appendix B

A Cumulative Damage Rule for Fatigue

of Composite Materials

The contents of this Appendix have been presented in a paper of the same

title at Winter Annual Meeting of the American Society of Mechanical Engineers,

in New York City, on December 4, 1979. It is available in a bound volume

entitled "Modern Developments in Composite Materials and Structures," edited

by J. R. Vinson, ASME, New York, N.Y.

In this appendix, experimental results in addition to those reported in

the ASfE paper have been included.
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A CUMJLATIVE DAMAGE RULE FOR FATIGUE

OF COMPOSITE MATERIALS

Pei Chi Chou
and

James Alper

Drexel University-Philadelphia, Pa.

ABSTRACT

A phenomenological cumulative damage rule for fatigue life is proposed.
It is most suitable for composite materials because of the large scatter in
fatigue life data. The rule is based on the percent-failure of a group of
specimens, instead of the popular Miner's rule, which is based on the percent-
life consumed. It is shown that Miner's rule contains statistical ambiguity
and a precise comparison with experimental results cannot be made. The
proposed percent-failure rule is compared with two sets of experimental results
with good agreement.

NOMENCLATURE

E( ) - expected value

F - cumulative distribution function

n - fatigue cycles

N - fatigue life

P - probability

S - fatigue stress level

x - fatigue cycles

X - radom variable for fatigue life

y x - x2 - additional life at S2 stress level.

- Weibull shape parameter

- Weibull scale parameter (characteristic life)

y*( ) - incomplete gamma function

r( ) - gamma function

p - mean

Subscripts

1 - at the first stress level; at Sl

2 - at the second stress level; at S2

1 - at the low stress level

h - at the high stress level
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Introduction

It is well-known that modern high performance composite materials, such as
graphite/epoxy laminates, have great variability and scatter in their properties,
especially in fatigue life. For a group of nominally identical specimens under
identical loading, the fatigue life can vary by a factor of 1000 between the most
and least durable ones. Typical values of Weibull shape parameter for composites
are around one or two; for unidirectional composites the shape parameter is even
lower, and can be as low as 0.4. In comparison, metals have shape parameter
typically above a value of four.

Due to this larger scatter and low value of shape parameter, it is essential

that proper care must be taken in characterizing material properties. For in-
stance, in specifying fatigue life at a given load level, just the mean life is
not sufficient; instead, the life distribution must be given. The Miner rule
for cumulative damage, which has been used for fatigue of metals, should be used
with extreme caution when applied to composites.

Miner's rule is a simple phenomenological rule, which gives the life under

consecutive loadings of different load levels, if the life at each individual
level is known. It is well-known that Miner's rule is deterministic; it gives
only mean fatigue life and does not account for the variability, or distribution,
of life. It will be shown in this paper that Miner's rule contains basic statis-

tical inconsistancy, and cannot be subject to experimental comparison for com-
posite materials because of their large scatter in life.

Ever since its first proposal in 1945 [1], Miner's rule has been used widely

for metal fatigue. People used it because of its simplicity. Its prediction of
fatigue life is not always satisfactory in comparison with experimental results.
Many modified versions of Miner's rule have been introduced; Leve [2] gave a de-
tailed review of some of these. Basically, Miner's rule, together with most of
the modifications, is based on the assumption that fatigue damage can be measured
by the cycle ratio nl/Nl, where n, is the number of cycles applied at stress
level Sl, and N is the fatigue life at SI . This cycle ratio may also be con-
sidered as the percent life" consumed. The original rule stipulates that when
the sum of the cycle ratio reaches unity the specimen fails. The modified ver-
sions assume the damage is not linearly proportional to the cycle ratio, but a

more complicated function of the cycle ratio.
Recently, cumulative damage in fatigue has been studied from a statistical,

or probabilistic, point of view. Birnbaum and Saunders [3] studied the Miner's

rule with a combined probabilistic and mechanics approach. They assumed that the
fatigue failure is due to the growth of a dominant crack. The crack extension
for each oscillation of loading is treated as a random variable. They further
assumed that the crack extension (a) is independent of the current crack length,

(b) has a distribution with an increasing failure rate (hazard rate), and (c) is
statistically independent of the final failure crack length. Under these assump-
tions and by utilizing some results from renewal theory, they demonstrated that
Miner's rule is applicable in terms of expected value (mean) of life. This is a
very interesting approach in combining both fracture mechanics (crack propagation)
and the statistical concept of random variables in studying fatigue damage. How-

ever, since it is based on the dominant crack propagation, its application to
composite materials is of questionable validity; the failure mode in composites
is much more complicated. Further, they did not give a comparison with any ex-
perimental data.
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Bogdanoff [4] proposed a cumulative damage model which is basically a phenome-
nological model. He considered a certain time interval, called duty cycle (DC),
as the basic unit for damage. The physical mechanism of damage accumulation of
the material in this duty cycle is not considered. He then made statistical
analysis by considering damage at the end of a duty cycle as a random variable, and
accumulation of damage was treated by the Markoff Process. This is an interesting
mathematical model of cumulative damage, but since it involves many assumptions and
undetermined parameters, its practical usefulness at the present is limited. In
comparing with experimental results, it can only be used to fit a life distribution r
function to test data; which can be done easily by other st endrrd methods (such as
fitting two or three parameter Weibull distributions by Laaximum likelihood method).

Yang and Jones [5] studied the effect of cumulative damage in fatigue life by
assuming a specific equation for the residual strength degradation. In this equa-
tion, the stress level of the fatigue is a variable. By changing values of this
variable, the cumulative damage at different stress levels can be accounted for.
Their approach is essentially also a "percent life" damage rule, like the Miner
rule. The results are limited to the cases where the particular degradation equa-
tion is applicable.

In this paper, a new cumulative damage rule that is applicable for fatigue
life with large scatter is proposed for composite materials. It is based on the
concept of percent-failure. This rule is just as simple as Miner's rule, is
statistically correct, and can be subject to experimental comparison.

PHENOMENOLOGICAL CUMULATIVE DAMAGE RULE

We shall consider first a simple case of fatigue at two load levels. The
life distribution at these two stress levels, Sl and S2, are considered known.
Figure (B-1 a)shows schematically these distributions. We shall consider these
distributions are of the two-parameter Weibull type, with scale parameters
(characteristic life) 81 and 82. Figure (B-lb) shows these two distributions in
terms of life normalized by its individual characteristic life, $1 and 82.

Assume we first load the specimen at load level Sl to a cycle xl, and then
shift to load S2 and fatigue to failure. We are interested in finding an equiva-
lent cycle X2 at the load level S2 which gives the same amount of fatigue wear
and damage as xI cycle at load Sl. This is the basic question posed by all
phenomenological cumulative damage rule.

There are two alternate approaches in formulating a cumulative damage rule,
one is based on percent-life consumed, which is used by Miner's rule and many of
the existing rules. The other approaches are based on percent-failure, which is
proposed in the present paper.

Miner's Rule - (Percent-Life Damage Rule)

The basic assumption in Miner's rule is that fatigue wear can be character-
ized by the percentage of life consumed. If we choose to use the Weibull scale
parameter (characteristic life) as a referencel, then Miner's rule is

xI  x 281 82•

1 Miner's rule as originally proposed in 1945, and also as generally applied,

does not define clearly the "life" at a given stress. It intended to be the
life of the specific specimen involved. Since in actual case, life of a given
specimen is never known, people have used some average value of life. We use
the characteristic life here for convenience. Similar results may be obtained
with mean life.
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In other words, if xI is equal to 0.5 61, we say the specimen has been fatigued
to half of its characteristic life. When we next move it to a different stress
level S2 , we assume that the specimen has already consumed 0.5 of the character-
istic life at S2 . In Figure (Ib), this is equivalent of moving from the point
A[xl/$1, Fl(xl/8 1 )] vertically to point B on F2.

Note that, in general, the values of Fl(xl) are not equal to F2 (x2 ). There-
fore, using point B to determine x2 involves a statistical inconsistency. Con-
sider a group of specimens all loaded at SI to cycle xl. At this cycle, let us
assume 20% of the specimens failed, or Fl(x I) = 0.2. Now, when we shift to
point B on the F2 curve, the values of F2 (x2 ) is, say 0.3. We have 80% of speci-

men left, while the F2 curve at point B indicates there should be only 70% left,
apparently this is not consistent.

Percent-Failure Damage Rule

In this case, we assume that the degree of fatigue wear is characterized by
the percentage of failure of the total population, or the total sample, up to
that cycle. If the specimens are loaded under stress S1 to cycle xl, we have
Fl (xI) percentage of failure. Now, if we shift the loading to S2, we assume the
same percentage of failure, or,

F 2 (x 2 ) Fl(x I) (2)

This is the basic assumption of the percent-failure rule. In Figure (lb), this
is equivalent to moving from point A horizontally to point C. If 20% of the
specimens failed under SI at xl, when shifted to S2, we assume that 20% have
failed, regardless of due to which load. This damage rule is based on a group of
specimens, or the population, instead of a individual specimen. Ideally, if the
failure mechanism of each specimen is known completely, then the behavior of the
population can be derived. Since we do not know the failure mechanism, we are
forced to study the behavior of the population directly.

If the shape parameter at these two stress levels are the same, al = a2,
then the curve, Fl vs. (xl/81 ), and the curve F2 vs. (x2 /a2 ) coincide, and the
percent-life and percent-failure assumptions are identical. In general, a1 0 2 ,
and they give different results.

For fatigue at more than two load levels, Miner's rule and the present per-
cent-failure rule may be expressed as follows. If x(l), x(2),..., are the cycles
applied at stress levels 1,2,... respectively, then Miner's rule states

x(i) -1 (3)

where $i is the characteristic life of the ith loading. The present percent-
failure rule will be

SA F i(x(i)) 1 1 (4)

where AFi(x(i)) is the percentage of failure occurred during the ith load. This
is equivalent to stating that the sum of the percentage failed at each loading
level is one, as shown schematically in Figure B-2. The number of cycles required
to fail all specimens is then

x = x(i) (5)
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Life Distribution under Two Loadings

Let the Weibull parameters be al, Bi for load Sl, and a2, 52 for load S2 ,

or

1(x -1- eNP~) (6)

F (x) = 1 - exp (_ 2  (7)

If we load a group of specimens at load Sl to a cycle x, and then switch to load

S2 and fatigue all specimens to failure, the present 
percent-failure damage rule

yields, from Eq. (2),

(X )( a7)l (8)

This relation implies that for each individual specimen, xI cycles at load Sl is

equivalent to x2 cycles at load S2 .

The life distribution at load S2 , of those specimens that survived xl cycles

at Sl (or x2 cycle at S2 ) is

x2) - P[X < xlX > x2 ] - 1- expE-t2 + ( )] (9)

Let y - x - x2 , where y is the cycle actually endured at stress 
S 2 , Eq. (9)

becomes

CL aN
F 2 ,x (y) I-exp + 2] (10)

Figure 3 shows the schematic curves of Eqs. (9) and (10).

The complete life distribution of specimens undergoing fatigue at load Sl

to x1 cycle and then at S2 to failure can be obtained by shifting the 
upper portion

of the F2 (x) curve to the left. The upper portion of F2 (x) is, as shown in Figure

B-3.

F () - 1 - exp r-- 2 x> x (11)
22

Shifting this curve to the left by the amount (x 2 - 1) gives

This equation is also shown in Figure B-3.
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The complete life distribution of specimens undergoing fatigue at load S

to x1 cycles and then at load S2 is, then,

F(x) 1 - 2 , for x < x

(13)

-1- expE 2  5 , for x > x1

where

a 1 2a
x- 82 (x/0 1 )

Figure BA gives a schematic plot of Eq. (13).

Let us restate that if the constant stress life distributions are given by

Eqs. (6) and (7), then the life distribution under two stress levels Sl and S2

is given by Eq. (13). Once this distribution is known, mean value of cycles
applied at each stress level can be calculated.

Comparison with Experimental Data

A series of experiments was conducted to compare with the present analytical

results. Tension fatigue tests were used for a unidirectional graphite/epoxy

composite. The specimens used and the testing procedure are the same as those de-

scribed in reference 6. Specimens are cut from composite plates. Specimen 6

and those for the present cumulative damage study are not from the same set of

plates. We suspect that there are some differences in the properties between the

12 plates used in reference 6 and the 5 plates used here. Therefore, the values of the

fatigue life distribution parameters of the present work are different from those of
reference 6. Maximum likelihood estimation of these data gives the Weibull parameters
as follows:

at stress level S, - 150 ksi,
7 7

a - 0.36, 8£ - 3.9x10 cycles, U, = 17.8x10 cycles

at stress level Sh - 180 ksi

ah - 0.37, Oh - 42x103  cycles, ph - 176x103  cycles

We have conducted two types of cumulative damage fatigue experiments. The

first is a "low-high" test; the specimens are first subjected to fatigue at the

lower stress Si to 458900 cycles (xl), those survived are then fatigued at the

higher stress Sh. The other experiment is the "high-low" test, the specimens are
subjected to Sh for 3570 cycles, and then fatigued at St to failure.

The life distributions as calculated from Eq. (13) for both cases are shown
in Figs. E-5, B-6. The experimental data are also plotted on these figures for

comparison. The median rank formula is used in plotting the cumulative distribution
F position of the data points [7]. Even though the number of specimens is rather

small, the data points are in general agreement with the theory. This series of
tests has not been completed yet; results with a large number of specimens vill be
presented shortly.
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Comparison with Another Set of Experiments

Awatani, Skiraishi and Tsukahara [8] recently conducted some fatigue experi-
ments and applied Miner's rule to their data. Their cumulative damage experiments
are very similar to ours presented above, a Low-high test, and a High-low test.
They found that, in general, the sum (nl/NI ) + (n2 /N2 ) for the Low-high test is
larger than unity, which is predicted by Miner's rule. In other words, the Low
high tests give higher life than that given by Miner's rule. For the High-low
tests, the general results show lower life than that predicted by Miner's rule.
The authors offered some explanation for these discrepancies by crack initiation,
strain-aging and other fracture mechanics reasons. It will be shown here that
the experimental results of reference 8 can be made to agree with the present
theory if the life distributions at the two stress levels have different shape
parameter. This is a phenomenological approach, no fracture mechanics assumption
is needed.

In reference 8 the test results are presented in the form of (1 - n2 /N2 ) vs
(nl/NI ) curves and points. The term (1 - n2 /N2 ), which is called the damage ratio,
should be equal to nl/NI if Miner's rule is correct.

Note that reference 8 treated all quantities as deterministic, and used the
average from three tests to represent one data point. In order to apply our theory,
we have to redefine all terms such as n, and NI .

The number xl, or n I , is the maximum number of cycles applied a stress level
SI to all specimens. But, not all specimens in a population can survive to xI
cycle. Therefore, the number of cycles at stress level S1 is a random variable,
and its expected value, or mean, should be used. Using the notation E(xI) for
the expected value of xl, we have,

E(xI ) " x fl.xl(X)dx (14)

where d (x)

I tl~xI  dx (5

and

1- a

F P(x) - P(X Z -Xx 1 ) (16)

After carrying out the integration, Eq. (14) becomes
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8r (1+ >* (l1 ~1
1 ((17)E(x1 ) = (<-+ t)

t I  [1 - exp- t

where r is the gamma function, y the incomplete gamma function (see for instance,
[9]) and

The number of cycles under the stress S2 , y - x(2) - x - x2 , is also a
random variable, with expected value E(y), or,

E(y) f y f 2 (y) d(y) (18)

where

d F2 , (y)

f2, = d(y) (19)

Using Eq. (10), and carrying out the integration, we obtain

__ 2 +

E(y) = 82 exp(t 2 ) +9 1 1 -2 (20)

t2 2

where

2  a

2=)

Let Pi and P2 be the mean life at S1 and S2 , respectively. Then, our
present interpretation of Miner's rule should be

E(xI )E-x1 ) + E-y- 1 (21)

or

or E =) _ 
(22)

P2 Pi

The expression 1 - E(y)/P 2 should replace the term l-n2/N2 used in reference 8,
and E(x)p)I replaces nl/N1 in reference 8. In Fig. B-7, the experimental points are

(i - -) vs (.-), as obtained in reference 8. The miner rule straight line is
N2  N1obtained by directly equating [1 - E(y)/P 2 ] to E(xl)/PI. The curves of the present

I theory are plotted by calculating E(x1) from Eq. (17), and E(y) from Eq. (20).
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26The mean life at the low stress level (127 N/mm ) is given in [8] as 2.2x106

cycles; the mean life at the high stress level (169 Nmm 2) is 7x104 cycles. We

have assumed that Weibull shape parameters at these two stress levels are 5.0 and

2.5, respectively, the corresponding values of E(x1) and E(y) are calculated from

Eqs. (17) and (20). It can be seen that the curves of the present theory agree

very well with the test data points. For the Low-high tests, the test points

are below the Miner's rule line, indicating longer life; the High-low tests

are above the Miner's rule line.

The original test values of every experiment are not given in reference 8, only

averages are given. Therefore, the shape parameters cannot be estimated. The

values of 5.0 and 2.5 are selected just to demonstrate that the deviation of

the experimental results from Miner's rule could be due to statistical distri-

bution.

CONCLUDING REMARKS

1. Miner's rule as expressed in conventional forms, such as Eqs. (1) or (3),

has statistical ambiguity, and cannot be compared with test data.

2. A statistically meaningful form of Miner's rule may be expressed as Eq. (21).

It is shown that the left hand side of Eq. (21) could be larger, or smaller

than unity. Therefore, Miner's rule is not always correct.

3. Fatigue life distribution under two different stress levels consecutively

can be expressed as in Eq. (13).

4. The method used here can be generalized to cases of more than two stress

levels.

5. The present percent-failure damage rule shows good agreement with two sets

of experimental data. Additional test data are needed to evaluate its merits.
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Figure B-2 Distribution Curves Showing Cumulative Damage by
the Present Percent-Failure Rule (Eq. 4 and 5).

60



X.r(>at S / F 2() at S 2

! //1./'// --Eq. (9)
x 

X

(a)

F(y)

Eq. (10)

(b)

F W

I Eq. (12) "

r Eq. (11)

I I

I x

I

(c) x x2 x

Figure B-3 Cumulative Distributions of Fatigue Life:

(a) At Stress Levels SI and S2, and at S2 for Specimens Survived
x2 , Eq. (9).

(b) At S2 in Terms of Additional Life y, and

(c) At S2 in Terms of x.
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Figure B-6. Comparison between Calculated and Experimental Cumulative
Distribution of Fatigue Life of Specimens Subjected to
High-Low Loading (High stress to 3.6x103 cycles then low
stress to failure)
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Figure B-7. Comparison of the present Percent-Failure Rule
(Eq. 22) with Experimental Data (Ref. [1).
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